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Figure 1. Molecular structure of 1, with selected bonds and angles. 
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(1.56 (2) and 1.61 (1) A vs. a normal 1.42 A) or its long ortho 
C-H bonds (stretched by an agostic interaction with samarium), 
but on the shortest bond in the system, namely, the N = N unit.4 

The utility of this reaction in the derivatization of organic het-
erocycles"'20 and in the more general area of organometallic 
heteroatomic metathesis reactions is under study. 
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Transition metals have the unique ability to simultaneously 
stabilize high-energy organic species and to activate them toward 
selective attack by a variety of chemical reagents. Cyclooctyne 
is the smallest cycloalkyne to have been prepared in the free state 
while cycloheptyne and cyclohexyne have been observed as fleeting 
intermediates by several methods.1 Several years ago, Bennett 
and co-workers reported the trapping of in situ generated cyclo­
hexyne and cycloheptyne as their bis(triphenylphosphine)platinum 
complexes.2 To date these are the only examples of transition-
metal-small-ring cycloalkyne complexes to be reported. We now 
report the preparation, the X-ray crystal structure, and a number 
of reactions of the trimethylphosphine adduct of the zirconoc-
ene-cyclohexyne complex. 

(1) Krebs, A.; Wilke, J. Top. Curr. Chem. 1983, 109, 189 and references 
therein. 

(2) Bennett, M. A.; Robertson, G. B.; Whimp, P. O.; Yoshida, T. J. Am. 
Chem. Soc. 1971, 93, 3797. Robertson, G. B.; Whimp, P. O. / . Am. Chem. 
Soc. 1975, 97, 1051. Bennett, M. A.; Yoshida, T. J. Am. Chem. Soc. 1978, 
100, 1750. 

(3) Stevens, C. L.; Valicenti, J. A. J. Am. Chem. Soc. 1965, 87, 838. 

The trimethylphosphine adduct of the zirconocene-cyclohexyne 
complex can be prepared as shown in Scheme I. Yields of 60% 
of 1 as analytically pure material are obtained in this manner, 
after recrystallization from ether. Compound 1 has been char­
acterized by 1H, 13C, and 31P NMR, elemental analysis, and X-ray 
crystallography. Each unit cell contains eight molecules, four each 
of two independent molecules which are nearly identical within 
experimental error (3u). Shown in Figure 1 is one of these two 
molecules, along with important bond angles and distances (av­
erage values for the two molecules). Of greatest interest is the 
carbon-carbon multiple bond length which averages 1.295 (25) 
A. This value is essentially identical with that seen in Bennett's 
platinum complex.2 As in that case, a significant amount of 
back-bonding is apparent causing the carbon-carbon bond length 
to be between that expected for a simple carbon-carbon double43 

and triple bond.4b That the "cyclohexyne" fragment experiences 
ring strain only to a small extent can also be seen from the C l -
C2-C3 and C6-C1-C2 bond angles of 125.2 (1.2)° and 126.0 
(1.2)° which deviate only to a small extent from that observed 
for simple olefins.42 Again, this is very similar to what is observed 
for the platinum complex. 

(4) (a) Chem. Soc. Spec. Publ. 1965, No. 18, S14s. (b) Chem. Soc. Spec. 
Publ. 1965, No. 18, Sl6s. 
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Complex 1 is an air- and moisture-sensitive solid which reacts 
with a wide variety of unsaturated organic groups as shown in 
Scheme II. Thus 1 reacts cleanly with nitriles,6 alkynes,7 al­
dehydes, and ketones. Although 1 fails to react with most sub­
stituted olefins, it reacts quite cleanly with 1,3-pentadiene (in a 
completely regiospecific manner) and with ethylene.8 

It should be noted that if 1-cyclohexenylmethylzirconocene is 
prepared at low temperature and is treated with nitriles or alkynes 
at -20 0C, followed by warming to room temperature, metal-
lacyclic products identical with those formed from 1 are observed. 
However, a similar reaction with isobutyraldehyde led to a complex 
mixture of products. 

Shown in Scheme III are what we feel are the two most likely 
mechanistic pathways to form 1 from its 1-cyclohexenyl-
methylzirconocene precursor. In path A, 1 is formed by a C-H 
activation mechanism with simultaneous production of methane.9 

Such a mechanistic path is completely analogous to that proposed 
by Erker for the production of a zirconocene-benzyne complex 
from diphenylzirconocene.9 An alternate mechanism, shown by 
path B, would involve a /3-hydride elimination to form intermediate 
2 followed by reductive elimination of methane. Since 2 would 
have the zirconium in a d0 configuration, no back-bonding would 
be possible to stabilize the cyclohexyne moiety. We feel that 2 
would be prohibitively high in energy and we, thus, favor path 
A. 

In summary, we have prepared and structurally characterized 
the trimethylphosphine adduct of a zirconocene-cyclohexyne 
complex. We have shown that it structurally more closely re­
sembles a metallacyclopropene rather than a metal-alkyne com­
plex.10 In addition we have reported on some of the rich reaction 
chemistry manifested by 1. 

We are currently working on the conversion of the metallacyclic 
products derived from 1 into synthetically useful organic products 
and the use of 1 to prepare bimetallic complexes and as an olefin 
polymerization catalyst. We are also currently attempting to use 
methodology similiar to that used to prepare 1 to prepare other 
transition-metal complexes of strained and unstrained systems and 
we will report on this work in due course. 
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First conceived by Franck and Rabinowitch,1 the "cage" or 
geminate effect on the recombination of radical pairs is well 
established, although "the precise definition of the dimensions or 
other characteristics of this solvent property remains a problem 
today".2 In terms of organic chemical phenomenology, the 
geminate effect relates to those products of radical recombination 
whose residual amount is irreducible under the influence of ef­
ficient traps for free radicals. 

In this paper, we report the first example of the operation of 
the "cage" effect on the stereochemical outcome of a thermal 
epimerization occurring by necessarily single or odd-numbered 
rotational processes. The original stimulus came from a desire 
to compare the single rotational preferences which might obtain 
in a ring of infinite size with those uncovered in the liquid phase, 
"diradical" automerizations of optically active methyl threo-\,2-
diphenylcyclopropane-1-carboxylate (RA = 18)3 and methyl 
r/ira>l,2-diphenylcyclopentane-l-carboxylate (RA = 3.4)4 to their 
erythro epimers.s 

The desired permutation is arranged simply by replacing the 
rings with two methyl groups! The resulting acyclic system of 
threo configuration is resolved and allowed to automerize thermally 
to its erythro epimer, in which the preference of one radical 
component to rotate over the other can be deduced unequivocally 
(Figure 1). First shedding of light on rotation in a "cage" came 
from the definitive, independent works of Kopecky and Gillan7 

and Greene et al.8 on the generation of a-phenylethyl radicals from 
optically active azo precursors in the presence of scavengers. Both 
groups observed some retention of activity. The probability of 
rotation (x = 0.50 corresponds to random) occurring prior to 
geminate recombination in the work of Greene et al. (x = 0.447), 
using 2-methyl-2-nitrosopropane (1.15 M) as scavenger in benzene 
(Figure 2), compares well with that {x = 0.436) found by Kopecky 
and Gillan, using butanethiol (1.2 M) also in benzene. 

Complications stemming from the generation of two radicals 
in a menage a trois (N2 and CO2 in several examples2) were 
avoided in a bond-breaking, bond-making, pas de deux sequence 
developed by Singer et al.9 In their ingenious, pioneering example, 
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